
测试Testing
留待以后吧。

REST framework includes a few helper classes that extend Django's existing test framework, and
improve support for making API requests.

APIRequestFactory
Extends Django's existing RequestFactory class .

Creating test requests

The APIRequestFactory class supports an almost identical API to Django's standard
RequestFactory class. This means that the standard .get() , .post() , .put() ,
.patch() , .delete() , .head() and .options() methods are all available.

Using the format argument

Methods which create a request body, such as post , put and patch , include a format
argument, which make it easy to generate requests using a content type other than multipart form
data. For example:

By default the available formats are 'multipart' and 'json' . For compatibility with
Django's existing RequestFactory the default format is 'multipart' .

To support a wider set of request formats, or change the default format, see the configuration
section .

from rest_framework.test import APIRequestFactory

Using the standard RequestFactory API to create a form POST request
factory = APIRequestFactory()
request = factory.post('/notes/', {'title': 'new idea'})

1
2
3
4
5

Create a JSON POST request
factory = APIRequestFactory()
request = factory.post('/notes/', {'title': 'new idea'}, format='json')

1
2
3

af://n0
https://www.django-rest-framework.org/api-guide/testing/#apirequestfactory
af://n4
https://docs.djangoproject.com/en/stable/topics/testing/advanced/#django.test.client.RequestFactory
https://www.django-rest-framework.org/api-guide/testing/#creating-test-requests
af://n6
https://www.django-rest-framework.org/api-guide/testing/#using-the-format-argument
af://n9
https://www.django-rest-framework.org/api-guide/testing/#configuration

Explicitly encoding the request body

If you need to explicitly encode the request body, you can do so by setting the content_type
flag. For example:

PUT and PATCH with form data

One di�erence worth noting between Django's RequestFactory and REST framework's
APIRequestFactory is that multipart form data will be encoded for methods other than just
.post() .

For example, using APIRequestFactory , you can make a form PUT request like so:

Using Django's RequestFactory , you'd need to explicitly encode the data yourself:

Forcing authentication

When testing views directly using a request factory, it's o�en convenient to be able to directly
authenticate the request, rather than having to construct the correct authentication credentials.

To forcibly authenticate a request, use the force_authenticate() method.

request = factory.post('/notes/', json.dumps({'title': 'new idea'}),
content_type='application/json')

1

factory = APIRequestFactory()
request = factory.put('/notes/547/', {'title': 'remember to email dave'})

1
2

from django.test.client import encode_multipart, RequestFactory

factory = RequestFactory()
data = {'title': 'remember to email dave'}
content = encode_multipart('BoUnDaRyStRiNg', data)
content_type = 'multipart/form-data; boundary=BoUnDaRyStRiNg'
request = factory.put('/notes/547/', content, content_type=content_type)

1
2
3
4
5
6
7

https://www.django-rest-framework.org/api-guide/testing/#explicitly-encoding-the-request-body
af://n14
https://www.django-rest-framework.org/api-guide/testing/#put-and-patch-with-form-data
af://n17
https://www.django-rest-framework.org/api-guide/testing/#forcing-authentication
af://n23

The signature for the method is force_authenticate(request, user=None,
token=None) . When making the call, either or both of the user and token may be set.

For example, when forcibly authenticating using a token, you might do something like the
following:

Note: force_authenticate directly sets request.user to the in-memory user instance.
If you are re-using the same user instance across multiple tests that update the saved user
state, you may need to call refresh_from_db() between tests.

Note: When using APIRequestFactory , the object that is returned is Django's standard
HttpRequest , and not REST framework's Request object, which is only generated once the

view is called.

This means that setting attributes directly on the request object may not always have the e�ect
you expect. For example, setting .token directly will have no e�ect, and setting .user
directly will only work if session authentication is being used.

Forcing CSRF validation

from rest_framework.test import force_authenticate

factory = APIRequestFactory()
user = User.objects.get(username='olivia')
view = AccountDetail.as_view()

Make an authenticated request to the view...
request = factory.get('/accounts/django-superstars/')
force_authenticate(request, user=user)
response = view(request)

1
2
3
4
5
6
7
8
9
10

user = User.objects.get(username='olivia')
request = factory.get('/accounts/django-superstars/')
force_authenticate(request, user=user, token=user.auth_token)

1
2
3

Request will only authenticate if `SessionAuthentication` is in use.
request = factory.get('/accounts/django-superstars/')
request.user = user
response = view(request)

1
2
3
4

https://docs.djangoproject.com/en/1.11/ref/models/instances/#django.db.models.Model.refresh_from_db
https://www.django-rest-framework.org/api-guide/testing/#forcing-csrf-validation
af://n37

By default, requests created with APIRequestFactory will not have CSRF validation applied
when passed to a REST framework view. If you need to explicitly turn CSRF validation on, you can
do so by setting the enforce_csrf_checks flag when instantiating the factory.

Note: It's worth noting that Django's standard RequestFactory doesn't need to include this
option, because when using regular Django the CSRF validation takes place in middleware, which
is not run when testing views directly. When using REST framework, CSRF validation takes place
inside the view, so the request factory needs to disable view-level CSRF checks.

APIClient
Extends Django's existing Client class .

Making requests

The APIClient class supports the same request interface as Django's standard Client class.
This means that the standard .get() , .post() , .put() , .patch() , .delete() ,
.head() and .options() methods are all available. For example:

To support a wider set of request formats, or change the default format, see the configuration
section .

Authenticating

.login(**kwargs)

The login method functions exactly as it does with Django's regular Client class. This allows
you to authenticate requests against any views which include SessionAuthentication .

factory = APIRequestFactory(enforce_csrf_checks=True)1

from rest_framework.test import APIClient

client = APIClient()
client.post('/notes/', {'title': 'new idea'}, format='json')

1
2
3
4

https://www.django-rest-framework.org/api-guide/testing/#apiclient
af://n43
https://docs.djangoproject.com/en/stable/topics/testing/tools/#the-test-client
https://www.django-rest-framework.org/api-guide/testing/#making-requests
af://n45
https://www.django-rest-framework.org/api-guide/testing/#configuration
https://www.django-rest-framework.org/api-guide/testing/#authenticating
af://n49
https://www.django-rest-framework.org/api-guide/testing/#loginkwargs
af://n50

To logout, call the logout method as usual.

The login method is appropriate for testing APIs that use session authentication, for example
web sites which include AJAX interaction with the API.

.credentials(**kwargs)

The credentials method can be used to set headers that will then be included on all
subsequent requests by the test client.

Note that calling credentials a second time overwrites any existing credentials. You can unset
any existing credentials by calling the method with no arguments.

The credentials method is appropriate for testing APIs that require authentication headers,
such as basic authentication, OAuth1a and OAuth2 authentication, and simple token
authentication schemes.

.force_authenticate(user=None, token=None)

Sometimes you may want to bypass authentication entirely and force all requests by the test
client to be automatically treated as authenticated.

This can be a useful shortcut if you're testing the API but don't want to have to construct valid
authentication credentials in order to make test requests.

Make all requests in the context of a logged in session.
client = APIClient()
client.login(username='lauren', password='secret')

1
2
3

Log out
client.logout()

1
2

from rest_framework.authtoken.models import Token
from rest_framework.test import APIClient

Include an appropriate `Authorization:` header on all requests.
token = Token.objects.get(user__username='lauren')
client = APIClient()
client.credentials(HTTP_AUTHORIZATION='Token ' + token.key)

1
2
3
4
5
6
7

Stop including any credentials
client.credentials()

1
2

https://www.django-rest-framework.org/api-guide/testing/#credentialskwargs
af://n56
https://www.django-rest-framework.org/api-guide/testing/#force_authenticateusernone-tokennone
af://n62

To unauthenticate subsequent requests, call force_authenticate setting the user and/or
token to None .

CSRF validation

By default CSRF validation is not applied when using APIClient . If you need to explicitly enable
CSRF validation, you can do so by setting the enforce_csrf_checks flag when instantiating
the client.

As usual CSRF validation will only apply to any session authenticated views. This means CSRF
validation will only occur if the client has been logged in by calling login() .

RequestsClient
REST framework also includes a client for interacting with your application using the popular
Python library, requests . This may be useful if:

You are expecting to interface with the API primarily from another Python service, and want to
test the service at the same level as the client will see.
You want to write tests in such a way that they can also be run against a staging or live
environment. (See "Live tests" below.)

This exposes exactly the same interface as if you were using a requests session directly.

Note that the requests client requires you to pass fully qualified URLs.

user = User.objects.get(username='lauren')
client = APIClient()
client.force_authenticate(user=user)

1
2
3

client.force_authenticate(user=None)1

client = APIClient(enforce_csrf_checks=True)1

from rest_framework.test import RequestsClient

client = RequestsClient()
response = client.get('http://testserver/users/')
assert response.status_code == 200

1
2
3
4
5

https://www.django-rest-framework.org/api-guide/testing/#csrf-validation
af://n68
https://www.django-rest-framework.org/api-guide/testing/#requestsclient
af://n73
https://www.django-rest-framework.org/api-guide/testing/#requestsclient-and-working-with-the-database
af://n83

RequestsClient and working with the database

The RequestsClient class is useful if you want to write tests that solely interact with the
service interface. This is a little stricter than using the standard Django test client, as it means that
all interactions should be via the API.

If you're using RequestsClient you'll want to ensure that test setup, and results assertions are
performed as regular API calls, rather than interacting with the database models directly. For
example, rather than checking that Customer.objects.count() == 3 you would list the
customers endpoint, and ensure that it contains three records.

Headers & Authentication

Custom headers and authentication credentials can be provided in the same way as when using a
standard requests.Session instance .

CSRF

If you're using SessionAuthentication then you'll need to include a CSRF token for any
POST , PUT , PATCH or DELETE requests.

You can do so by following the same flow that a JavaScript based client would use. First make a
GET request in order to obtain a CRSF token, then present that token in the following request.

For example...

from requests.auth import HTTPBasicAuth

client.auth = HTTPBasicAuth('user', 'pass')
client.headers.update({'x-test': 'true'})

1
2
3
4

https://www.django-rest-framework.org/api-guide/testing/#requestsclient-and-working-with-the-database
af://n83
https://www.django-rest-framework.org/api-guide/testing/#headers-authentication
af://n86
http://docs.python-requests.org/en/master/user/advanced/#session-objects
https://www.django-rest-framework.org/api-guide/testing/#csrf
af://n89

Live tests

With careful usage both the RequestsClient and the CoreAPIClient provide the ability to
write test cases that can run either in development, or be run directly against your staging server
or production environment.

Using this style to create basic tests of a few core piece of functionality is a powerful way to
validate your live service. Doing so may require some careful attention to setup and teardown to
ensure that the tests run in a way that they do not directly a�ect customer data.

CoreAPIClient
The CoreAPIClient allows you to interact with your API using the Python coreapi client library.

client = RequestsClient()

Obtain a CSRF token.
response = client.get('http://testserver/homepage/')
assert response.status_code == 200
csrftoken = response.cookies['csrftoken']

Interact with the API.
response = client.post('http://testserver/organisations/', json={
 'name': 'MegaCorp',
 'status': 'active'
}, headers={'X-CSRFToken': csrftoken})
assert response.status_code == 200

1
2
3
4
5
6
7
8
9
10
11
12
13

https://www.django-rest-framework.org/api-guide/testing/#live-tests
af://n94
https://www.django-rest-framework.org/api-guide/testing/#coreapiclient
af://n98

Headers & Authentication

Custom headers and authentication may be used with CoreAPIClient in a similar way as with
RequestsClient .

API Test cases
REST framework includes the following test case classes, that mirror the existing Django test case
classes, but use APIClient instead of Django's default Client .

APISimpleTestCase

APITransactionTestCase

APITestCase

APILiveServerTestCase

Example

Fetch the API schema
client = CoreAPIClient()
schema = client.get('http://testserver/schema/')

Create a new organisation
params = {'name': 'MegaCorp', 'status': 'active'}
client.action(schema, ['organisations', 'create'], params)

Ensure that the organisation exists in the listing
data = client.action(schema, ['organisations', 'list'])
assert(len(data) == 1)
assert(data == [{'name': 'MegaCorp', 'status': 'active'}])

1
2
3
4
5
6
7
8
9
10
11
12

from requests.auth import HTTPBasicAuth

client = CoreAPIClient()
client.session.auth = HTTPBasicAuth('user', 'pass')
client.session.headers.update({'x-test': 'true'})

1
2
3
4
5

https://www.django-rest-framework.org/api-guide/testing/#headers-authentication_1
af://n101
https://www.django-rest-framework.org/api-guide/testing/#api-test-cases
af://n105
https://www.django-rest-framework.org/api-guide/testing/#example
af://n116

You can use any of REST framework's test case classes as you would for the regular Django test
case classes. The self.client attribute will be an APIClient instance.

URLPatternsTestCase
REST framework also provides a test case class for isolating urlpatterns on a per-class basis.
Note that this inherits from Django's SimpleTestCase , and will most likely need to be mixed
with another test case class.

Example

from django.urls import reverse
from rest_framework import status
from rest_framework.test import APITestCase
from myproject.apps.core.models import Account

class AccountTests(APITestCase):
 def test_create_account(self):
 """
 Ensure we can create a new account object.
 """
 url = reverse('account-list')
 data = {'name': 'DabApps'}
 response = self.client.post(url, data, format='json')
 self.assertEqual(response.status_code, status.HTTP_201_CREATED)
 self.assertEqual(Account.objects.count(), 1)
 self.assertEqual(Account.objects.get().name, 'DabApps')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

from django.urls import include, path, reverse
from rest_framework.test import APITestCase, URLPatternsTestCase

class AccountTests(APITestCase, URLPatternsTestCase):
 urlpatterns = [
 path('api/', include('api.urls')),
]

 def test_create_account(self):
 """

1
2
3
4
5
6
7
8
9
10
11

https://www.django-rest-framework.org/api-guide/testing/#urlpatternstestcase
af://n120
https://www.django-rest-framework.org/api-guide/testing/#example_1
af://n122

Testing responses

Checking the response data

When checking the validity of test responses it's o�en more convenient to inspect the data that
the response was created with, rather than inspecting the fully rendered response.

For example, it's easier to inspect response.data :

Instead of inspecting the result of parsing response.content :

Rendering responses

If you're testing views directly using APIRequestFactory , the responses that are returned will
not yet be rendered, as rendering of template responses is performed by Django's internal request-
response cycle. In order to access response.content , you'll first need to render the response.

 Ensure we can create a new account object.
 """
 url = reverse('account-list')
 response = self.client.get(url, format='json')
 self.assertEqual(response.status_code, status.HTTP_200_OK)
 self.assertEqual(len(response.data), 1)

12
13
14
15
16
17

response = self.client.get('/users/4/')
self.assertEqual(response.data, {'id': 4, 'username': 'lauren'})

1
2

response = self.client.get('/users/4/')
self.assertEqual(json.loads(response.content), {'id': 4, 'username':
'lauren'})

1
2

view = UserDetail.as_view()
request = factory.get('/users/4')
response = view(request, pk='4')
response.render() # Cannot access `response.content` without this.
self.assertEqual(response.content, '{"username": "lauren", "id": 4}')

1
2
3
4
5

https://www.django-rest-framework.org/api-guide/testing/#testing-responses
af://n125
https://www.django-rest-framework.org/api-guide/testing/#checking-the-response-data
af://n126
https://www.django-rest-framework.org/api-guide/testing/#rendering-responses
af://n132

Configuration

Setting the default format

The default format used to make test requests may be set using the
TEST_REQUEST_DEFAULT_FORMAT setting key. For example, to always use JSON for test

requests by default instead of standard multipart form requests, set the following in your
settings.py file:

Setting the available formats

If you need to test requests using something other than multipart or json requests, you can do so
by setting the TEST_REQUEST_RENDERER_CLASSES setting.

For example, to add support for using format='html' in test requests, you might have
something like this in your settings.py file.

REST_FRAMEWORK = {
 ...
 'TEST_REQUEST_DEFAULT_FORMAT': 'json'
}

1
2
3
4

REST_FRAMEWORK = {
 ...
 'TEST_REQUEST_RENDERER_CLASSES': (
 'rest_framework.renderers.MultiPartRenderer',
 'rest_framework.renderers.JSONRenderer',
 'rest_framework.renderers.TemplateHTMLRenderer'
)
}

1
2
3
4
5
6
7
8

https://www.django-rest-framework.org/api-guide/testing/#configuration
af://n136
https://www.django-rest-framework.org/api-guide/testing/#setting-the-default-format
af://n137
https://www.django-rest-framework.org/api-guide/testing/#setting-the-available-formats
af://n140

	测试Testing
	APIRequestFactory
	Creating test requests
	Using the format argument
	Explicitly encoding the request body
	PUT and PATCH with form data

	Forcing authentication
	Forcing CSRF validation

	APIClient
	Making requests
	Authenticating
	.login(**kwargs)
	.credentials(**kwargs)
	.force_authenticate(user=None, token=None)

	CSRF validation

	RequestsClient
	RequestsClient and working with the database
	Headers & Authentication
	CSRF
	Live tests

	CoreAPIClient
	Headers & Authentication

	API Test cases
	Example

	URLPatternsTestCase
	Example

	Testing responses
	Checking the response data
	Rendering responses

	Configuration
	Setting the default format
	Setting the available formats

